250W PMU

CAN PROTOCOL

# 1 Introduction

The 250W PMU has both RS232 and CANbus interfaces that perform essentially the same functions, these being:

- Configuration (of parameters stored in the PMU's non-volatile memory),
- Control (real-time control of the PMU's various features), and
- Monitoring (of measured voltages, currents, temperatures, etc).

Once the PMU has been configured, there is no requirement to connect anything to either communications interface – the PMU will operate quite normally with no communications at all.

This document describes the default CAN communications interface and protocol (RS232 is described in the 250W RS232 protocol document). Custom CAN protocols can also be developed to suit existing CAN ID structures; please contact us to discuss your requirements.

# 2 Overview of CAN

CAN is a multi-master broadcast serial bus, originally developed for automotive applications but now used extensively across a wide range of industries. CAN provides more robust communications than is possible with RS232, and includes automatic arbitration-free transmission, message prioritisation, automatic retries, CRC data protection, fault confinement and more.

Physically CAN is usually implemented as a 2-wire differential serial bus, although a third ground wire is always recommended. The bus must be terminated at each end. This can be a simple 120 Ohm resistor connected across the two signal lines, or it can be a pair of 60 Ohm resistors connecting each signal line to a rail biased midway between the minimum and maximum signal voltages. The second arrangement is superior as it provides far greater immunity from electrical noise. The 250W PMU does not terminate the bus.

The 250W PMU supports Baudrates of 125, 250, 500 and 1000 kb/s.

The CAN specification defines four frame types (data, remote, error and overload), but only the data frame can actually transmit any payload data. Like many CAN implementations, only the data frame is used here. Data frames can have 0 to 8 bytes of payload data.

This protocol is based on CAN 2.0B; i.e. CAN frames have a 29-bit message identifier associated with them. The message ID is divided into 3 parts as described in the next section.

This page intentionally left blank.

## 3 Contents

| 1 | Intro | oduction1                                      |
|---|-------|------------------------------------------------|
| 2 | Over  | rview of CAN1                                  |
| 3 | Cont  | zents                                          |
| 4 | CAN   | Message ID 4                                   |
|   | 4.1   | Group ID                                       |
|   | 4.2   | Packet ID                                      |
|   | 4.3   | Address                                        |
| 5 | CAN   | Packet Types                                   |
|   | 5.1   | Packet ID 0x00 – Voltages                      |
|   | 5.2   | Packet ID 0x01 – Currents                      |
|   | 5.3   | Packet ID 0x02 – Battery statuses7             |
|   | 5.4   | Packet ID 0x03 – Temperatures                  |
|   | 5.5   | Packet ID 0x04 – Miscellaneous                 |
|   | 5.6   | Packet ID 0x0F – Measurement request           |
|   | 5.7   | Packet ID 0x10 – Set (or Get) V <sub>A</sub>   |
|   | 5.8   | Packet ID 0x11 – Set (or Get) V <sub>P</sub>   |
|   | 5.9   | Packet ID 0x12 – Set (or Get) Vs               |
|   | 5.10  | Packet ID 0x13 – Set (or Get) $V_B$            |
|   | 5.11  | Packet ID 0x14 – Set (or Get) PP               |
|   | 5.12  | Packet ID 0x15 – Set (or Get) PS 10            |
|   | 5.13  | Packet ID 0x16 – Set (or Get) T <sub>0</sub>   |
|   | 5.14  | Packet ID 0x17 – Set (or Get) Tu               |
|   | 5.15  | Packet ID 0x18 - Set (or Get) S <sub>0</sub>   |
|   | 5.16  | Packet ID 0x19 – Set (or Get) CT 11            |
|   | 5.17  | Packet ID 0x1B – Set (or Get) CA 11            |
|   | 5.18  | Packet ID 0x20 – Set (or Get) output states    |
|   | 5.19  | Packet ID 0x21 – Enable outputs                |
|   | 5.20  | Packet ID 0x22 – Disable outputs 12            |
|   | 5.21  | Packet ID 0x23 – Set (or Get) generation state |
|   | 5.22  | Packet ID 0x24 – Start                         |
|   | 5.23  | Packet ID 0x25 - Stop                          |
|   | 5.24  | Packet ID 0x26 – Reset                         |
|   | 5.25  | Packet ID 0x30 – Serial number                 |
|   | 5.26  | Packet ID 0x31 – Firmware                      |
| 6 | Doci  | ument version history                          |
|   | 6.1   | 1.0 -> 1.1                                     |
|   | 6.2   | 1.1 -> 1.2                                     |
|   | 6.3   | 1.2 -> 1.3                                     |
|   | 6.4   | 1.3 -> 1.4                                     |
|   | 6.5   | 1.4 -> 1.5                                     |
|   | 6.6   | 1.5 -> 1.6                                     |
|   | 6.7   | 1.6 -> 1.7                                     |
|   | 6.8   | 1.7 -> 1.8                                     |
|   | 6.9   | 1.8 -> 1.9                                     |
|   | 5.5   |                                                |

## 4 CAN Message ID

Each CAN message is preceded by the 29-bit CAN message ID, which specifies the type of hardware (group ID), the type of content (packet ID), and the address of the device associated with the message:



## 4.1 Group ID

Specifies the type of hardware that this CAN frame came from or is being sent to. The PMU always has a group ID of 30 (0x1E).

## 4.2 Packet ID

Specifies the contents of a packet. The following packet types are defined for the 250W PMU:

| Packet<br>ID | Name                   | Direction<br>(with<br>respect to<br>PMU) | Length<br>(number of<br>data bytes) | Description                                 |
|--------------|------------------------|------------------------------------------|-------------------------------------|---------------------------------------------|
| 0x00         | Voltages               | Out                                      | 7                                   | Contains measured voltages                  |
| 0x01         | Currents               | Out                                      | 6                                   | Contains measured currents                  |
| 0x02         | Battery<br>statuses    | Out                                      | 4                                   | Contains calculated battery energies        |
| 0x03         | Temperatures           | Out                                      | 5                                   | Contains measured temperatures              |
| 0x04         | Miscellaneous          | Out                                      | 5                                   | Contains miscellaneous quantities           |
| 0x0F         | Measurement<br>request | In                                       | 1 -> 0 to 5<br>packets              | Request a set of measurement values         |
| 0x10         | Set V <sub>A</sub>     | In                                       | 1                                   | Set Avionics voltage                        |
| 0x11         | Set V <sub>P</sub>     | In                                       | 1                                   | Set Payload voltage                         |
| 0x12         | Set Vs                 | In                                       | 1                                   | Set Servo voltage                           |
| 0x13         | Set V <sub>B</sub>     | In                                       | 1                                   | Set Battery voltage                         |
| 0x14         | Set PP                 | In                                       | 1                                   | Set packet period                           |
| 0x15         | Set PS                 | In                                       | 1                                   | Set packets streamed                        |
| 0x16         | Set T <sub>0</sub>     | In                                       | 1                                   | Set temperature offset                      |
| <b>0x17</b>  | Set Tu                 | In                                       | 1                                   | Set upper temperature limit                 |
| <b>0x18</b>  | Set S <sub>0</sub>     | In                                       | 1                                   | Set power-up state                          |
| <b>0x19</b>  | Set CT                 | In                                       | 1                                   | Set cranking time                           |
| <b>0x1B</b>  | Set CA                 | In                                       | 2                                   | Set CAN address                             |
| 0x20         | Set output             | In                                       | 1                                   | Control or determine the enable             |
|              | states                 |                                          |                                     | status of the various outputs               |
| 0x21         | Enable<br>outputs      | In                                       | 1                                   | Turn specified outputs on                   |
| 0x22         | Disable<br>outputs     | In                                       | 1                                   | Turn specified outputs off                  |
| 0x23         | Set generation state   | In                                       | 1                                   | Turn electrical power generation on and off |
| 0x24         | Start                  | In                                       | 0                                   | Start cranking the engine                   |
| 0x25         | Stop                   | In                                       | 0                                   | Stop cranking the engine                    |
| 0x26         | Reset                  | In                                       | 0                                   | Restart the PMU                             |
| 0x30         | Serial number          | In                                       | 0 -> 2                              | Request PMU serial number                   |
| 0x31         | Firmware               | In                                       | 0 -> 6                              | Request firmware information                |

 Table 1 – Blue: Measured/calculated values; Green: User-defined values stored in non-volatile memory;

 Red: Volatile values & commands; Black: Fixed values stored in non-volatile memory.

For packets with IDs up to 0x20 inclusive, if sent to the PMU with zero data bytes the PMU will return a packet containing the current values.

## 4.3 Address

Each PMU within any given network must have a unique address between 0 and 65534 inclusive. 65535 (0xFFFF) is reserved to form a broadcast message ID to which all PMUs will respond. PMUs are shipped with a default address of 1.

## 5 CAN Packet Types

Please note that all 2-byte quantities are transmitted and received in big-endian format; i.e. high byte first, followed by the low byte.

## 5.1 Packet ID 0x00 – Voltages

This packet contains measured voltages. The PMU can be configured to stream this packet at regular intervals, or it can be requested by issuing this packet with zero data bytes.

| Byte | Name                      | Description                                                                                                                       |
|------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 0    | Avionics output voltage   | An unsigned byte with value 10 times the measured voltage (i.e. in 0.1V increments). Value ranges from 0 to 250 (0.0 to 25.0V).   |
| 1    | 28VDC output voltage      | An unsigned byte with value 5 times the measured voltage (i.e. in 0.2V increments).<br>Value ranges from 0 to 250 (0.0 to 50.0V). |
| 2    | Payload output<br>voltage | An unsigned byte with value 10 times the measured voltage (i.e. in 0.1V increments). Value ranges from 0 to 250 (0.0 to 25.0V).   |
| 3    | Servo output<br>voltage   | An unsigned byte with value 10 times the measured voltage (i.e. in 0.1V increments). Value ranges from 0 to 125 (0.0 to 12.5V).   |
| 4    | Battery A<br>voltage      | An unsigned byte with value 10 times the measured voltage (i.e. in 0.1V increments). Value ranges from 0 to 250 (0.0 to 25.0V).   |
| 5    | Battery B<br>voltage      | An unsigned byte with value 10 times the measured voltage (i.e. in 0.1V increments). Value ranges from 0 to 250 (0.0 to 25.0V).   |
| 6    | Generator<br>voltage      | An unsigned byte with value 2.5 times the measured voltage (i.e. in 0.4V increments). Value ranges from 0 to 250 (0.0 to 100.0V). |

Table 2

## 5.2 Packet ID 0x01 – Currents

This packet contains measured currents. The PMU can be configured to stream this packet at regular intervals, or it can be requested by issuing this packet with zero data bytes.

| Byte | Name                       | Description                                                                                                                                   |
|------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | Avionics output<br>current | An unsigned byte with value 10 times the measured current (i.e. in 0.1A increments).<br>Value ranges from 0 to 100 (0.0 to 10.0A).            |
| 1    | 28VDC output<br>current    | A signed byte with value 10 times the measured current (i.e. in 0.1A increments). Value ranges from $-125$ to $+125$ ( $-12.5$ to $+12.5$ A). |
| 2    | Payload output<br>current  | An unsigned byte with value 10 times the measured current (i.e. in 0.1A increments).<br>Value ranges from 0 to 100 (0.0 to 10.0A).            |
| 3    | Servo output<br>current    | An unsigned byte with value 10 times the measured current (i.e. in 0.1A increments). Value ranges from 0 to 100 (0.0 to 10.0A).               |
| 4    | Battery A<br>current       | A signed byte with value 10 times the measured current (i.e. in 0.1A increments). Value ranges from $-125$ to $+125$ ( $-12.5$ to $+12.5A$ ). |
| 5    | Battery B<br>current       | A signed byte with value 10 times the measured current (i.e. in 0.1A increments). Value ranges from $-125$ to $+125$ ( $-12.5$ to $+12.5$ A). |

## 5.3 Packet ID 0x02 – Battery statuses

This packet contains calculated battery charge statuses. The PMU can be configured to stream this packet at regular intervals, or it can be requested by issuing this packet with zero data bytes.

| Byte | Name                | Description                                                                                                                                 |
|------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 0, 1 | Battery A<br>energy | A signed integer with value equal to the time-integral of current into battery A since power up in mAH. Value ranges from -32768 to +32767. |
| 2, 3 | Battery B<br>energy | A signed integer with value equal to the time-integral of current into battery B since power-up in mAH. Value ranges from -32768 to +32767. |

Table 4

## 5.4 Packet ID 0x03 – Temperatures

This packet contains measured temperatures. The PMU can be configured to stream this packet at regular intervals, or it can be requested by issuing this packet with zero data bytes.

| Byte | Name                                    | Description                                                                                                                                            |
|------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | Internal PMU<br>temperature             | A signed byte with value equal to the temperature inside the PMU in degrees Celsius. Value ranges from $-128$ to $+127$ .                              |
| 1    | Battery A<br>temperature                | A signed byte with value equal to the temperature of battery A in degrees Celsius.<br>Value ranges from $-128$ to $+127$ ( $-128 = no$ sensor).        |
| 2    | Battery B<br>temperature                | A signed byte with value equal to the temperature of battery B in degrees Celsius.<br>Value ranges from -128 to +127 (-128 = no sensor).               |
| 3    | Generator<br>temperature                | A signed byte with value equal to the temperature of the generator (BLDC motor) in degrees Celsius. Value ranges from -128 to +127 (-128 = no sensor). |
| 4    | Engine starter<br>module<br>temperature | A signed byte with value equal to the temperature of the engine starter module in degrees Celsius. Value ranges from -49 to +127.                      |

## 5.5 Packet ID 0x04 – Miscellaneous

This packet contains miscellaneous measured and derived quantities. The PMU can be configured to stream this packet at regular intervals, or it can be requested by issuing this packet with zero data bytes.

| Byte | Name               | Description                                                                                                                                                                                                                                   |
|------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0, 1 | Generator<br>speed | An unsigned integer with value equal to the generator speed in RPM.<br>Value ranges from 0 to 65535.                                                                                                                                          |
| 2    | Flag register 0    | The following bits are defined:<br>Bit 4: Electrical power generation flag (1 = enabled)<br>Bit 5: Thermal shutdown flag (1 = shutdown)<br>Bit 6: Safe operating area shutdown flag (1 = shutdown)<br>Bit 7: Payload shedding flag (1 = shed) |
| 3    | Flag register 1    | The following bits are defined:<br>Bit 7: Engine starter module status flag (1 = ready)                                                                                                                                                       |
| 4    | Flag register 2    | The following bits are defined:<br>Bit 0: Avionics and servo outputs (1 = enabled)<br>Bit 1: Payload output (1 = enabled)<br>Bit 2: Battery A charger (1 = enabled)<br>Bit 3: Battery B charger (1 = enabled)                                 |

Table 6

#### 5.6 Packet ID 0x0F – Measurement request

This packet requests a set of measurements from the PMU. The measurements that are required may be specified in the data byte. If this packet is issued with zero data bytes all measurements will be returned.

Use of this packet allows the supervising entity to poll the PMU, as an alternative to having the PMU push values onto the CAN bus at regular intervals using the PMU's packet streaming features.

| Byte | Name | Description                                                           |
|------|------|-----------------------------------------------------------------------|
| 0    | MR   | Measurements requested. This byte indicates the measurements that are |
|      |      | to be returned. Bits have the following significance:                 |
|      |      | Bit 0: Packet ID 0x00 (Voltages)                                      |
|      |      | Bit 1: Packet ID 0x01 (Currents)                                      |
|      |      | Bit 2: Packet ID 0x02 (Battery Statuses)                              |
|      |      | Bit 3: Packet ID 0x03 (Temperatures)                                  |
|      |      | Bit 4: Packet ID 0x04 (Miscellaneous)                                 |
|      |      | Bits 5–7: X (don't care)                                              |
|      |      | 0 = disabled, 1 = enabled.                                            |

Table 7

## 5.7 Packet ID 0x10 – Set (or Get) V<sub>A</sub>

This packet sets the stored value of  $V_A$ , the avionics output voltage. Note that  $V_A$  is the configuration value stored in non-volatile memory, not the measured value. The value of  $V_A$  may be obtained by issuing this packet with zero data bytes.

| Byte | Name | Description                                                                                                                                                                                                                      |
|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | Va   | Avionics output voltage. An unsigned byte with value 10 times the configured voltage (i.e. in 0.1V increments). $V_A$ may be set to any value from 12.0 to 24.0V inclusive, corresponding to unsigned byte values of 120 to 240. |

## 5.8 Packet ID 0x11 - Set (or Get) V<sub>P</sub>

This packet sets the stored value of  $V_P$ , the payload output voltage. Note that  $V_P$  is the configuration value stored in non-volatile memory, not the measured value. The value of  $V_P$  may be obtained by issuing this packet with zero data bytes.

| Byte Na | ame | Description                                                                                                                                                                                                                     |
|---------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 Vp    |     | Payload output voltage. An unsigned byte with value 10 times the configured voltage (i.e. in 0.1V increments). $V_P$ may be set to any value from 12.0 to 24.0V inclusive, corresponding to unsigned byte values of 120 to 240. |

Table 9

## 5.9 Packet ID 0x12 – Set (or Get) Vs

This packet sets the stored value of  $V_S$ , the servo output voltage. Note that  $V_S$  is the configuration value stored in non-volatile memory, not the measured value. The value of  $V_S$  may be obtained by issuing this packet with zero data bytes.

| Byte | Name | Description                                                                                                                                                                                                                 |
|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | Vs   | Servo output voltage. An unsigned byte with value 10 times the configured voltage (i.e. in 0.1V increments). $V_s$ may be set to any value from 5.0 to 12.0V inclusive, corresponding to unsigned byte values of 50 to 120. |

Table 10

## 5.10 Packet ID 0x13 - Set (or Get) V<sub>B</sub>

This packet sets the stored value of  $V_B$ , the battery charging voltage. Note that  $V_B$  is the configuration value stored in non-volatile memory, not the measured value. The value of  $V_B$  may be obtained by issuing this packet with zero data bytes.

| Byte | Name | Description                                                                                                                                                                                                                       |
|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | VB   | Battery charging voltage. An unsigned byte with value 10 times the configured voltage (i.e. in 0.1V increments). $V_B$ may be set to any value from 20.0 to 25.2V inclusive, corresponding to unsigned byte values of 200 to 252. |

Table 11

## 5.11 Packet ID 0x14 – Set (or Get) PP

This packet sets the stored value of PP, the packet period. This is the interval of time between successive transmissions of streamed data. The packets that are streamed are defined by PS, the packets streamed value. The value of PP may be obtained by issuing this packet with zero data bytes.

| Byte | Name | Description                                                                                                                                       |  |
|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0    | PP   | acket period. An unsigned byte with value 10 times the packet period                                                                              |  |
|      |      | (i.e. in 0.1S increments). The packet period may be set to any value from 0.1 to 25.5 seconds, corresponding to unsigned byte values of 1 to 255. |  |

## 5.12 Packet ID 0x15 – Set (or Get) PS

This packet sets the stored value of PS, the packets that are streamed. The value of PS may be obtained by issuing this packet with zero data bytes.

| Byte | Name | Description                                                          |
|------|------|----------------------------------------------------------------------|
| 0    | PS   | Packets streamed. This byte indicates the packets that are streamed. |
|      |      | Bits have the following significance:                                |
|      |      | Bit 0: Packet ID 0x00 (Voltages)                                     |
|      |      | Bit 1: Packet ID 0x01 (Currents)                                     |
|      |      | Bit 2: Packet ID 0x02 (Battery Statuses)                             |
|      |      | Bit 3: Packet ID 0x03 (Temperatures)                                 |
|      |      | Bit 4: Packet ID 0x04 (Miscellaneous)                                |
|      |      | Bits 5–7: X (don't care)                                             |
|      |      | 0 = disabled, 1 = enabled.                                           |

Table 13

## 5.13 Packet ID 0x16 - Set (or Get) $T_0$

This packet sets the stored value of  $T_0$ , the temperature offset calibration value. The value of  $T_0$  may be obtained by issuing this packet with zero data bytes.

 $\mathsf{T}_0$  is set at the factory and should not normally need changing.

| Byte | Name | Description                                                                                                                                                            |
|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | To   | Temperature offset calibration value. An unsigned byte used to calibrate the PMU's internal temperature sensor. $T_0$ may be set to any value from 0 to 255 inclusive. |

Table 14

## 5.14 Packet ID 0x17 - Set (or Get) T<sub>U</sub>

This packet sets the stored value of  $T_U$ , the upper temperature limit. The value of  $T_U$  may be obtained by issuing this packet with zero data bytes.

There is approximately 10% hysteresis. Note that thermal shutdown **DOES NOT** affect the servo, payload or avionics outputs (as long as at least one battery is connected); it does, however, mean that all battery charging ceases and the 28VDC output will assume the highest battery voltage available.

| Byte | Name                                                                 | Description                                                                    |  |
|------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| 0    | Tυ                                                                   | Upper temperature limit. An unsigned byte with value equal to the upper        |  |
|      | temperature limit in degrees Celsius. Tu may be set to any value fro |                                                                                |  |
|      |                                                                      | to 255 inclusive. Setting $T_U$ to 0 will force the PMU into thermal shutdown, |  |
|      |                                                                      | and setting $T_{U}$ to 255 will disable thermal shutdown.                      |  |

## 5.15 Packet ID 0x18 – Set (or Get) S<sub>0</sub>

This packet sets the stored value of  $S_0$ , the PMU's initial state.  $S_0$  defines how the PMU's outputs and features are configured immediately after power-up or reset. The value of  $S_0$  may be obtained by issuing this packet with zero data bytes.

| Byte | Name           | Description                                          |
|------|----------------|------------------------------------------------------|
| 0    | S <sub>0</sub> | Initial state. Bits have the following significance: |
|      |                | Bit 0: Avionics and servo outputs                    |
|      |                | Bit 1: Payload output                                |
|      |                | Bit 2: Battery A charger                             |
|      |                | Bit 3: Battery B charger                             |
|      |                | Bit 4: Battery disconnect detect                     |
|      |                | Bit 5: Payload shedding                              |
|      |                | Bit 6: Safe operating area management                |
|      |                | Bit 7: X (don't care)                                |
|      |                | 0 = disabled, 1 = enabled.                           |

Table 16

## 5.16 Packet ID 0x19 – Set (or Get) CT

This packet sets the stored values of CT, the cranking time. This parameter is only relevant for units fitted with an engine starter. The value of CT may be obtained by issuing this packet with zero data bytes.

| Byte | Name | Description                                                                                                                                                                                                                                                        |
|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | СТ   | Cranking time. An unsigned byte with value 10 times the maximum cranking time (i.e. in 0.1S increments). The cranking time may be set to any value from 0.1 to 25.5 seconds, corresponding to unsigned byte values of 1 to 255. A value of 0 disables the timeout. |

Table 17

## 5.17 Packet ID 0x1B – Set (or Get) CA

This packet sets the stored values of CA, the CAN address. The value of CA may be obtained by issuing this packet with zero data bytes.

| Byte | Name | Description                                                                                                                                                                                                      |
|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0, 1 | CA   | CAN address. The CAN address may be set to any value from 0 to 65534                                                                                                                                             |
|      |      | (0x0000 to 0xFFFE) inclusive. 65535 (0xFFFF) is a "broadcast" address to which all PMUs will respond (provided that the rest of the ID is valid). This is useful for determining unknown or forgotten addresses. |

## 5.18 Packet ID 0x20 – Set (or Get) output states

This packet enables or disables the various outputs. Conversely, the enable status of the various outputs may be obtained by issuing this packet with zero data bytes.

When this packet is used to control the various outputs, it may be prudent to perform a Get usage followed by a Set usage, in order to not change the state of other outputs unintentionally. Output states are also streamed in the Miscellaneous packet.

Enabling and disabling the various outputs may be more easily accomplished using the Enable and Disable outputs packets, as these packets can modify the state of an arbitrary combination of outputs without affecting the remaining outputs.

| Bits have the following significance: |                                                                                                                                                                                                                       |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bito nave the following organication  |                                                                                                                                                                                                                       |
| Bit 0: Avionics and servo outputs     |                                                                                                                                                                                                                       |
| Bit 1: Payload output                 |                                                                                                                                                                                                                       |
| Bit 2: Battery A charger              |                                                                                                                                                                                                                       |
| Bit 3: Battery B charger              |                                                                                                                                                                                                                       |
| Bits 4–7: X (don't care)              |                                                                                                                                                                                                                       |
| 0 = disabled, 1 = enabled.            |                                                                                                                                                                                                                       |
|                                       | Bit Shave the following significance.<br>Bit 0: Avionics and servo outputs<br>Bit 1: Payload output<br>Bit 2: Battery A charger<br>Bit 3: Battery B charger<br>Bits 4–7: X (don't care)<br>0 = disabled, 1 = enabled. |

Table 19

#### 5.19 Packet ID 0x21 – Enable outputs

This packet turns one or more outputs on. Other outputs are unaffected.

| Byte | Name   | Description                                                         |
|------|--------|---------------------------------------------------------------------|
| 0    | Enable | This byte determines which outputs are to be enabled. Bits have the |
|      |        | following significance:                                             |
|      |        | Bit 0: Avionics and servo outputs                                   |
|      |        | Bit 1: Payload output                                               |
|      |        | Bit 2: Battery A charger                                            |
|      |        | Bit 3: Battery B charger                                            |
|      |        | Bits 4–7: X (don't care)                                            |
|      |        | 0 = no action, 1 = enable.                                          |

Table 20

## 5.20 Packet ID 0x22 – Disable outputs

This packet turns one or more outputs off. Other outputs are unaffected.

| Byte | Name    | Description                                                          |
|------|---------|----------------------------------------------------------------------|
| 0    | Disable | This byte determines which outputs are to be disabled. Bits have the |
|      |         | following significance:                                              |
|      |         | Bit 0: Avionics and servo outputs                                    |
|      |         | Bit 1: Payload output                                                |
|      |         | Bit 2: Battery A charger                                             |
|      |         | Bit 3: Battery B charger                                             |
|      |         | Bits 4–7: X (don't care)                                             |
|      |         | 0 = no action, 1 = disable.                                          |

## 5.21 Packet ID 0x23 – Set (or Get) generation state

This packet turns electrical power generation on and off. The current state of electrical power generation may be obtained by issuing this packet with zero data bytes. It is also streamed in the Miscellaneous packet.

Turning electrical power generation off removes the electromechanical load from the internal combustion engine; it **DOES NOT** affect the avionics, servo or payload outputs (as long as at least one battery is connected).

| Byte | Name | Description                                                            |  |  |
|------|------|------------------------------------------------------------------------|--|--|
| 0    | Gen  | Electrical power generation. Bit 0 of this byte determines the current |  |  |
|      |      | state of electrical power generation. $0 = disabled$ , $1 = enabled$ . |  |  |

Table 22

## 5.22 Packet ID 0x24 – Start

Starts cranking the engine. This parameter is only relevant for units fitted with an engine starter. Must be issued with zero data bytes.

#### 5.23 Packet ID 0x25 – Stop

Stops cranking the engine. This parameter is only relevant for units fitted with an engine starter. This command is included for safety reasons only (the engine starter automatically disengages when it detects that the engine has started). Must be issued with zero data bytes.

#### 5.24 Packet ID 0x26 – Reset

Restarts the PMU. Outputs are set to their power-up states, the battery energies are reset to zero, and electrical power generation is enabled. Must be issued with zero data bytes.

Provided that the avionics and servo outputs are on when the Reset packet is received, and the power-up state  $S_0$  specifies that they are also enabled at power-up, these outputs will remain stable throughout the restart process.

#### 5.25 Packet ID 0x30 – Serial number

On reception of this packet ID (with zero data bytes), the PMU will respond with a packet containing the following data:

| Byte | Name          | Description                                                                                                                                                                        |
|------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0, 1 | Serial number | Unsigned word, range 0 – 65535. Every PMU is given a unique serial number at manufacture. This is a read-only value and cannot be changed. It is not affected by firmware updates. |

Table 23

#### 5.26 Packet ID 0x31 – Firmware

On reception of this packet ID (with zero data bytes), the PMU will respond with a packet containing the following data:

| Byte | Name          | Description                             |
|------|---------------|-----------------------------------------|
| 0    | Version major | Unsigned byte, range 0 – 99.            |
| 1    | Version minor | Unsigned byte, range 0 – 99.            |
| 2    | Build day     | Unsigned byte, range 1 – 31.            |
| 3    | Build month   | Unsigned byte, range 1 – 12.            |
| 4, 5 | Build year    | Unsigned word, ranges from 2015 and up. |

## 6 Document version history

## 6.1 1.0 -> 1.1

- Packet ID 0x03 Temperatures updated to reflect firmware version 1.12 (external temperature sensing added).
- Packet ID 0x04 Miscellaneous updated to reflect firmware version 1.12 (engine starter module status flag added).
- Packet ID 0x13 Minimum battery voltage changed from 16.8 to 20.0V.

## 6.2 1.1 -> 1.2

• Document section numbering added

#### 6.3 1.2 -> 1.3

- This section renamed to Document version history.
- Document reformatted to suit printing and binding.
- Table 1 (Packet ID) updated to improve clarity. Packet descriptions updated to improve clarity.

## 6.4 1.3 -> 1.4

• Improved descriptions of Packet ID 0x20 – Set (or Get) output states.

## 6.5 1.4 -> 1.5

- Removed mention of internal CANbus termination.
- Added Packet ID 0x0F Measurement Request. Supported from firmware version 1.14 onwards.

#### 6.6 1.5 -> 1.6

- Minor cosmetic changes.
- Changed description of Packet ID 0x18 Set (or Get) S<sub>0</sub>, but the command itself remains unchanged.

#### 6.7 1.6 -> 1.7

• Packet ID 0x18 updated to reflect new feature added at firmware version 1.15 – Battery disconnect detect (bit 4).

#### 6.8 1.7 -> 1.8

- Packet ID 0x18 updated to reflect new feature added at firmware version 1.16 Safe operating area management (bit 6).
- Packet ID 0x04 updated to reflect firmware version 1.16 (flag register 0 bit 6 changed from start button pressed to safe operating area shutdown flag).

## 6.9 1.8 -> 1.9

• Overview updated to reflect multiple Baudrates supported in firmware version 1.17.